metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetra-µ-benzoato-bis[(quinoxaline)copper(II)]

Eun Yong Lee,^a Byeong Kwon Park,^a Cheal Kim,^a* Sung-Jin Kim^b and Youngmee Kim^b*

^aDepartment of Fine Chemistry, Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, and ^bDivision of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

Received 6 December 2007; accepted 20 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.080; data-to-parameter ratio = 14.0.

The paddlewheel-type centrosymmetric dinuclear title complex, $[Cu_2(C_7H_5O_2)_4(C_8H_6N_2)_2]$, contains four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around each Cu atom, with four O atoms in the equatorial plane, is completed by an N atom of a quinoxaline molecule [Cu-N = 2.2465 (18) Å] and by the second Cu atom $[Cu \cdots Cu = 2.668 (5) \text{ Å}]$. The Cu atom is 0.216 Å out of the plane of the four O atoms.

Related literature

For the related structure, $Cu_2(O_2CPh)_4(py)_2$ (py = pyridine), see: Speier & Fülöp (1989). For background information, see: Cotton & Walton (1993); Pichon *et al.* (2007); Goto *et al.* (2007); Takamizawa *et al.* (2004); Casarin *et al.* (2005); Deka *et al.* (2006).

Experimental

Crystal data

$Cu_2(C_7H_5O_2)_4(C_8H_6N_2)_2$	$\gamma = 82.142 \ (3)^{\circ}$
$M_r = 871.82$	V = 959.4 (3) Å ³
Friclinic, P1	Z = 1
a = 10.1423 (16) Å	Mo Kα radiation
b = 10.3400 (17) Å	$\mu = 1.17 \text{ mm}^{-1}$
c = 10.5148 (17) Å	T = 293 (2) K
$\alpha = 65.459 \ (2)^{\circ}$	$0.15 \times 0.10 \times 0.08 \text{ mm}$
$\beta = 73.063 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
5377 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	262 parameters
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
3668 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

3668 independent reflections 2983 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.031$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of the Environment is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2301).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). *Inorg. Chem.* 44, 6265– 6276.
- Cotton, F. A. & Walton, R. A. (1993). *Multiple Bonds Between Metal Atoms*, 2nd ed. New York: Oxford University Press.
- Deka, K., Sarma, R. & Baruah, J. B. (2006). *Inorg. Chem. Commun.* 9, 931–934.
 Goto, M., Furukawa, M., Miyamoto, J., Kanoh, H. & Kaneko, K. (2007). *Langmuir*, 23, 5264–5266.
- Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Speier, G. & Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.
- Takamizawa, S., Nakata, E. & Saito, T. (2004). Inorg. Chem. Commun. 7, 1–3.

supplementary materials

Acta Cryst. (2008). E64, m286 [doi:10.1107/S1600536807067876]

Tetra-µ-benzoato-bis[(quinoxaline)copper(II)]

E. Y. Lee, B. K. Park, C. Kim, S.-J. Kim and Y. Kim

Comment

The dinuclear metal carboxylates, $M_2(O_2CR)_4$, are important for the study of structures and metal-metal interaction (Cotton & Walton, 1993). Among them copper(II) carboxylates are used as building blocks to form a pillard-grid MOF with large pores (Pichon *et al.*, 2007), and copper(II) benzoate pyrazine is used as the organic-inorganic hybrid complex that adsorbs gas molecules through clathrate formation (Goto *et al.*, 2007, Takamizawa *et al.*, 2004). Due to different coordination modes of carboxylates (Casarin *et al.*, 2005), it is essential to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligands (Deka *et al.*, 2006). Controlling the binding of carboxylate will make it possible to synthesize complexes having new structures. We report here on the structure of new copper(II) benzoate with quinoxaline.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 2, -y + 1, -z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around the copper atom is completed by nitrogen atom of quinoxaline molecule (Cu—N 2.2465 (18) Å) and by the second copper atom (Cu···Cu 2.668 (5) Å). The copper atom is 0.216 Å out of the plane of the four oxygen atoms.

Experimental

19.0 mg (0.1 mmol) of Cu(NO₃)₂.2.5H₂O and 28.0 mg (0.2 mmol) of C₆H₅COONH₄ were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of quinoxaline ligand (26.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included in the refinement in riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level.

Tetra-µ-benzoato-bis[(quinoxaline)copper(II)]

Crystal data

$[Cu_2(C_7H_5O_2)_4(C_8H_6N_2)_2]$	Z = 1
$M_r = 871.82$	$F_{000} = 446$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.509 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 10.1423 (16) Å	Cell parameters from 2414 reflections
b = 10.3400 (17) Å	$\theta = 2.4 - 27.2^{\circ}$
c = 10.5148 (17) Å	$\mu = 1.17 \text{ mm}^{-1}$
$\alpha = 65.459 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 73.063 \ (3)^{\circ}$	Block, blue
$\gamma = 82.142 \ (3)^{\circ}$	$0.15\times0.10\times0.08~mm$
V = 959.4 (3) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	2983 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.1^{\circ}$
φ and ω scans	$h = -6 \rightarrow 12$
Absorption correction: none	$k = -12 \rightarrow 12$
5377 measured reflections	$l = -11 \rightarrow 12$
3668 independent reflections	

Refinement

D efinement on F^2	Secondary atom site location: difference Fourier man
Kermement on F	Secondary atom site location. unterence i ourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0403P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\text{max}} = 0.002$
3668 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y Cu1 0.03419 (11) 1.11111 (3) 0.47628 (3) 0.40624(3)011 0.99508 (16) 0.32526 (17) 0.43180 (19) 0.0499 (5) 012 1.18983 (16) 0.63828 (16) 0.40754 (17) 0.0440 (4) C11 0.5137 (2) 0.8752(2)0.2967(2)0.0369(5)C12 0.8048(2)0.1757 (2) 0.5189(2) 0.0351 (5) C13 0.8728(3)0.0988(3)0.4383(3)0.0492 (6) H13 0.059* 0.9618 0.1230 0.3800 C14 0.8095 (3) -0.0143(3)0.4433 (3) 0.0568 (7) H14 0.3897 0.068* 0.8564 -0.0666C15 0.6776 (3) -0.0490(3)0.5274 (3) 0.0498 (7) H15 0.6349 -0.12470.5306 0.060* C16 0.6087 (3) 0.0279 (3) 0.0470(6) 0.6069(3)H16 0.5191 0.0044 0.6637 0.056* C17 0.6716(2) 0.1398 (2) 0.6030(2) 0.0408 (6) 0.049* H17 0.6243 0.1916 0.6572 O21 1.02164 (17) 0.60977 (18) 0.25640 (18) 0.0495 (4) O22 1.16461 (17) 0.35143 (16) 0.58557 (17) 0.0452 (4) C21 0.9089(2)0.6714(2) 0.2873 (2) 0.0370 (5) C22 0.8591 (2) 0.7841 (2) 0.1645 (2) 0.0382 (5) C23 0.7344 (3) 0.8541 (3) 0.1901 (3) 0.0535 (7) H23 0.6771 0.8249 0.2837 0.064* C24 0.6936 (3) 0.9660 (3) 0.0797 (3) 0.0694 (9) H24 0.6096 1.0123 0.0993 0.083* C25 1.0094(3)0.7761 (4) -0.0586(3)0.0678(9)H25 0.7497 1.0866 -0.1329 0.081* C26 0.8975 (3) 0.9385 (3) -0.0869(3)0.0666 (8) H26 0.9523 0.9660 -0.18150.080* C27 0.9401 (3) 0.0233 (3) 0.0540(7) 0.8263 (3) H27 1.0232 0.7791 0.0026 0.065* N31 0.41356 (19) 0.25284 (19) 0.0354 (4) 1.28562 (19) N32 1.4763 (2) 0.2919(2) 0.0746(2) 0.0522 (6) C31 1.2485 (3) 0.3591 (3) 0.1760 (3) 0.0457 (6) H31 1.1554 0.3601 0.1804 0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C32	1.3443 (3)	0.2991 (3)	0.0868 (3)	0.0519 (7)
H32	1.3115	0.2631	0.0344	0.062*
C33	1.5184 (2)	0.3494 (2)	0.1517 (3)	0.0443 (6)
C34	1.6606 (3)	0.3475 (3)	0.1428 (3)	0.0615 (8)
H34	1.7237	0.3059	0.0862	0.074*
C35	1.7047 (3)	0.4059 (3)	0.2163 (3)	0.0684 (9)
H35	1.7984	0.4048	0.2089	0.082*
C36	1.6121 (3)	0.4678 (3)	0.3030 (3)	0.0608 (8)
H36	1.6448	0.5078	0.3523	0.073*
C37	1.4736 (3)	0.4702 (3)	0.3163 (3)	0.0468 (6)
H37	1.4124	0.5106	0.3753	0.056*
C38	1.4240 (2)	0.4112 (2)	0.2406 (2)	0.0363 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03083 (17)	0.03639 (17)	0.04054 (18)	-0.00078 (11)	-0.00605 (12)	-0.02234 (13)
011	0.0379 (10)	0.0541 (11)	0.0676 (12)	-0.0115 (8)	0.0016 (9)	-0.0407 (9)
O12	0.0422 (10)	0.0443 (10)	0.0528 (10)	-0.0082 (8)	-0.0025 (8)	-0.0307 (8)
C11	0.0375 (14)	0.0357 (13)	0.0414 (13)	-0.0001 (11)	-0.0138 (12)	-0.0168 (11)
C12	0.0380 (13)	0.0327 (12)	0.0396 (13)	-0.0006 (10)	-0.0150 (11)	-0.0159 (10)
C13	0.0387 (14)	0.0505 (15)	0.0651 (17)	-0.0080 (12)	-0.0026 (13)	-0.0344 (14)
C14	0.0577 (18)	0.0534 (17)	0.0745 (19)	-0.0017 (14)	-0.0120 (15)	-0.0430 (15)
C15	0.0589 (18)	0.0380 (14)	0.0593 (16)	-0.0103 (12)	-0.0237 (14)	-0.0174 (12)
C16	0.0423 (15)	0.0473 (15)	0.0485 (15)	-0.0119 (12)	-0.0099 (12)	-0.0141 (12)
C17	0.0433 (14)	0.0411 (14)	0.0403 (13)	-0.0041 (11)	-0.0112 (11)	-0.0172 (11)
O21	0.0420 (10)	0.0636 (11)	0.0481 (10)	0.0139 (9)	-0.0157 (8)	-0.0291 (9)
O22	0.0435 (10)	0.0467 (10)	0.0421 (10)	0.0063 (8)	-0.0103 (8)	-0.0171 (8)
C21	0.0380 (14)	0.0378 (13)	0.0463 (14)	-0.0037 (11)	-0.0137 (12)	-0.0246 (11)
C22	0.0433 (14)	0.0392 (13)	0.0408 (13)	-0.0027 (11)	-0.0134 (11)	-0.0220 (11)
C23	0.0600 (18)	0.0604 (17)	0.0413 (14)	0.0139 (14)	-0.0151 (13)	-0.0246 (13)
C24	0.089 (2)	0.067 (2)	0.0587 (19)	0.0328 (18)	-0.0347 (18)	-0.0315 (16)
C25	0.100 (3)	0.0545 (18)	0.0569 (19)	0.0055 (18)	-0.0405 (19)	-0.0190 (15)
C26	0.081 (2)	0.076 (2)	0.0396 (16)	-0.0212 (18)	-0.0102 (16)	-0.0173 (15)
C27	0.0476 (16)	0.0667 (19)	0.0508 (16)	-0.0041 (14)	-0.0096 (14)	-0.0275 (14)
N31	0.0364 (11)	0.0353 (10)	0.0357 (10)	-0.0006 (8)	-0.0072 (9)	-0.0169 (9)
N32	0.0573 (15)	0.0457 (13)	0.0505 (13)	0.0041 (11)	-0.0010 (11)	-0.0263 (11)
C31	0.0421 (15)	0.0506 (15)	0.0452 (14)	-0.0046 (12)	-0.0048 (12)	-0.0230 (12)
C32	0.0621 (19)	0.0520 (16)	0.0474 (15)	-0.0075 (14)	-0.0044 (14)	-0.0299 (13)
C33	0.0401 (14)	0.0364 (13)	0.0419 (14)	0.0056 (11)	-0.0030 (12)	-0.0084 (11)
C34	0.0439 (16)	0.0628 (19)	0.0628 (19)	0.0138 (14)	-0.0055 (15)	-0.0205 (15)
C35	0.0355 (16)	0.084 (2)	0.065 (2)	0.0011 (15)	-0.0125 (15)	-0.0107 (17)
C36	0.0482 (17)	0.078 (2)	0.0540 (17)	-0.0079 (15)	-0.0188 (15)	-0.0183 (15)
C37	0.0422 (15)	0.0528 (16)	0.0447 (14)	-0.0024 (12)	-0.0100 (12)	-0.0189 (12)
C38	0.0356 (13)	0.0332 (12)	0.0331 (12)	0.0000 (10)	-0.0055 (10)	-0.0089 (10)

Geometric parameters (Å, °)

Cu1—012	1.9582 (15)	C23—C24	1.375 (3)

Cu1—O11	1.9660 (15)	С23—Н23	0.9300
Cu1—O21	1.9735 (16)	C24—C25	1.367 (4)
Cu1—O22	1.9746 (16)	C24—H24	0.9300
Cu1—N31	2.2465 (18)	C25—C26	1.366 (4)
Cu1—Cu1 ⁱ	2.6683 (6)	C25—H25	0.9300
O11—C11	1.258 (3)	C26—C27	1.383 (4)
O12—C11 ⁱ	1.263 (2)	C26—H26	0.9300
C11—O12 ⁱ	1.263 (2)	С27—Н27	0.9300
C11—C12	1.498 (3)	N31—C31	1.313 (3)
C12—C13	1.377 (3)	N31—C38	1.370 (3)
C12—C17	1.383 (3)	N32—C32	1.302 (3)
C13—C14	1.383 (3)	N32—C33	1.366 (3)
C13—H13	0.9300	C31—C32	1.413 (3)
C14—C15	1.370 (4)	C31—H31	0.9300
C14—H14	0.9300	С32—Н32	0.9300
C15—C16	1.371 (3)	C33—C34	1.415 (4)
C15—H15	0.9300	C33—C38	1.416 (3)
C16—C17	1.376 (3)	C34—C35	1.351 (4)
C16—H16	0.9300	C34—H34	0.9300
С17—Н17	0.9300	C35—C36	1.395 (4)
O21—C21	1.255 (3)	С35—Н35	0.9300
O22—C21 ⁱ	1.267 (3)	C36—C37	1.369 (3)
C21—O22 ⁱ	1.267 (3)	С36—Н36	0.9300
C21—C22	1.500 (3)	C37—C38	1.407 (3)
C22—C23	1.381 (3)	С37—Н37	0.9300
C22—C27	1.386 (3)		
O12—Cu1—O11	167.30 (6)	C27—C22—C21	120.9 (2)
O12—Cu1—O21	89.25 (7)	C24—C23—C22	121.2 (3)
O11—Cu1—O21	88.44 (7)	C24—C23—H23	119.4
O12—Cu1—O22	89.63 (7)	С22—С23—Н23	119.4
O11—Cu1—O22	89.93 (7)	C25—C24—C23	120.2 (3)
O21—Cu1—O22	167.48 (6)	C25—C24—H24	119.9
O12—Cu1—N31	101.20 (7)	C23—C24—H24	119.9
O11—Cu1—N31	91.45 (6)	C26—C25—C24	119.5 (3)
O21—Cu1—N31	95.59 (7)	C26—C25—H25	120.3
O22—Cu1—N31	96.86 (7)	C24—C25—H25	120.3
O12—Cu1—Cu1 ¹	85.49 (5)	C25—C26—C27	120.9 (3)
O11—Cu1—Cu1 ⁱ	81.87 (5)	C25—C26—H26	119.6
O21—Cu1—Cu1 ⁱ	85.08 (5)	C27—C26—H26	119.6
O22—Cu1—Cu1 ⁱ	82.40 (5)	C26—C27—C22	120.0 (3)
N31—Cu1—Cu1 ⁱ	173.27 (5)	С26—С27—Н27	120.0
C11—O11—Cu1	125.83 (15)	С22—С27—Н27	120.0
C11 ⁱ —O12—Cu1	121.79 (15)	C31—N31—C38	116.26 (19)
O11—C11—O12 ⁱ	125.0 (2)	C31—N31—Cu1	115.16 (15)
O11—C11—C12	117.4 (2)	C38—N31—Cu1	128.20 (14)
012 ⁱ —C11—C12	117.6 (2)	C32—N32—C33	115.7 (2)

supplementary materials

C13—C12—C17	119.0 (2)	N31—C31—C32	122.6 (2)
C13—C12—C11	119.8 (2)	N31—C31—H31	118.7
C17—C12—C11	121.1 (2)	C32—C31—H31	118.7
C12—C13—C14	120.4 (2)	N32—C32—C31	123.1 (2)
С12—С13—Н13	119.8	N32—C32—H32	118.5
C14—C13—H13	119.8	С31—С32—Н32	118.5
C15—C14—C13	120.0 (2)	N32—C33—C34	119.2 (2)
C15—C14—H14	120.0	N32—C33—C38	122.0 (2)
C13—C14—H14	120.0	C34—C33—C38	118.9 (2)
C14—C15—C16	120.0 (2)	C35—C34—C33	120.1 (3)
C14—C15—H15	120.0	С35—С34—Н34	119.9
C16—C15—H15	120.0	С33—С34—Н34	119.9
C15—C16—C17	120.3 (2)	C34—C35—C36	121.1 (3)
C15—C16—H16	119.9	С34—С35—Н35	119.4
C17—C16—H16	119.9	С36—С35—Н35	119.4
C16—C17—C12	120.3 (2)	C37—C36—C35	120.6 (3)
С16—С17—Н17	119.8	С37—С36—Н36	119.7
С12—С17—Н17	119.8	С35—С36—Н36	119.7
C21—O21—Cu1	122.18 (16)	C36—C37—C38	119.8 (2)
C21 ⁱ —O22—Cu1	125.03 (15)	С36—С37—Н37	120.1
O21—C21—O22 ⁱ	125.1 (2)	С38—С37—Н37	120.1
O21—C21—C22	117.6 (2)	N31—C38—C37	120.2 (2)
O22 ⁱ —C21—C22	117.2 (2)	N31—C38—C33	120.3 (2)
C23—C22—C27	118.2 (2)	C37—C38—C33	119.4 (2)
C23—C22—C21	120.8 (2)		

Symmetry codes: (i) -x+2, -y+1, -z+1.

